Scientific Inquiry and Nuclear Chemistry Learning Goals (Standards 1 and 4)

	1. I can identify the I.V. and D.V. of an experiment.
	2. I can write a problem statement for an experiment.
	3. I can write a hypothesis for an experiment.
	4. I can identify the control group of an experiment.
	5. I can explain the reason why there is a control group in experiments.
	6. I can read and explain data from a data table.
	7. I can write a conclusion for an experiment that includes: the purpose, the
	results, specific data from the results, and whether or not the hypothesis was
	proven or disproved. (Using complete sentences.)
	8. I can write the definition of matter.
	9. I can name some items that are <u>not</u> matter.
	10. I can recall that all matter is made up of tiny particles called atoms.
	11. I can recall that all atoms are neutral.
	12. I can name the 3 subatomic particles that make up an atom.
	13. I can name the charge, location and mass (amu) of each subatomic particle.
	14. I can state where all of the mass and most of the volume of an atom is
	located.
	15. I can complete a particle inventory of any given atom.
	16. I can describe how an isotope is different from an atom.
	17. I can determine state of matter of an element by looking at the periodic
	table.
	18. I can identify parts of an element block on the periodic table (atomic mass,
	atomic #, and element symbol).
	19. I can list the four fundamental forces of the universe, compare their
	strengths and give an example of each force.
	20. I can define nuclear fusion and fission and give examples of both.
	21. I can explain how fusion in the Sun releases enormous amounts of energy
	(E = mc ²) and forms some of the elements over time.
	22. I can describe the types of radioactive decay (alpha, beta & gamma decay).
	23. I can define alpha and beta particles and gamma rays, their properties and
_	their energy.
	24. I can define what half-life is for a radioactive element.
Ц	25. I can use half-life in calculating the decay of a radioactive element.